Home Products Most Popular Contact
No items in your cart.

Molecular Methods in Clinical Microbiology (Online CE Course)

(based on 334 customer ratings)

Author: Cathy Dragoni, MT(ASCP)SM
Reviewers: Dawn Morong, BS, MT(ASCP), CLS(NCA); Michele Marshall, MT(ASCP)

This course offers a historical look at the progression of molecular methods used in the clinical laboratory. The advantages of these molecular methods over traditional microbiology are discussed, along with the requirements and challenges faced during implementation in a routine clinical setting. Basic methods and molecular techniques are described, including the principle reactions of some assays of current interest for infectious diseases.

See all available courses »

Continuing Education Credits

P.A.C.E.® Contact Hours (acceptable for AMT, ASCP, and state recertification): 1.5 hour(s)
Course number 578-012-17, approved through 2/28/2019
Florida Board of Clinical Laboratory Personnel Credit Hours - General (Microbiology/Mycology/Parasitology): 1.5 hour(s)
Course number 20-547787, approved through 9/1/2018

Objectives

  • Describe some of the history of molecular methods and their introduction into the routine diagnostic laboratory.
  • Describe some of the advantages of molecular methods over traditional microbiology.
  • Describe the requirements and some of the challenges of implementing molecular methods in the setting of a routine clinical microbiology laboratory.
  • Describe the principles of the basic methods of molecular techniques.
  • Describe some of the assays of current interest for infectious disease and their principles of reaction.

Customer Ratings

(based on 334 customer ratings)

Course Outline

Click on the links below to preview selected pages from this course.
  • Some History of Development
      • Prior to 1985
      • Chlamydia trachomatis and Neisseria gonorrhoeae
      • Human Papilloma Virus (HPV) and Mycobacterium
      • Hepatitis and Viral Load Testing
      • Initially, why were molecular methods difficult to perform in routine clinical laboratories? (Choose all that apply.)
      • Why were Chlamydia and Neisseria logical targets for the development of a commercial molecular assay? (Choose all that apply.)
  • Potential Benefits of Molecular Methods over Traditional Microbiology
      • The Key Benefits: Improved Sensitivity of Detection
      • The Key Benefits: Improved Sensitivity of Detection, continued
      • The Key Benefits: Specificity of Identification
      • The Key Benefits: Reduced Turnaround Time
      • In traditional culture or antigen detection methods, the sensitivity of detection is adversely affected by which of the following? (Choose all that ap...
      • Why can molecular methods offer improved turnaround times over cultivation methods? (Choose all that apply.)
  • Challenges for Implementing Molecular Microbiology
      • Challenges for Implementation: Space Requirements
      • Challenges for Implementation: Separation of Key Activities
      • Challenges for Implementation: Workflow Requirements
      • Challenges for Implementation: Required Work Skills
      • Challenges for Implementation: Cost
      • Why is it important to consider work space and workflow design for molecular methods? (Select all that apply.):
      • Molecular testing entails precise workflow requirements. Technologists must progress through a series of steps in a specific order to ensure quality r...
  • Definitions and Principles of Basic Methods
  • Assays of Interest for Infectious Disease: Staphylococcus aureus and Methicillin-resistant S. aureus (MRSA)
  • Assays of Interest for Infectious Disease: Influenza and Other Respiratory Viruses
      • Prior Traditional Methods and the Need for Change
      • Introduction of Molecular Methods
      • 2009 - Swine Flu
      • Improvements for Influenza Testing
      • Which statement about the 2009 H1N1 virus is TRUE?
      • Which statements are TRUE about the molecular methods made available under the Emergency Use Authorization (EUA)? (Choose all that apply.)
  • Assays of Interest for Infectious Disease: Clostridium difficile
      • Clinical Significance
      • Previous Methodologies: Culture and Cell Cytotoxicity Neutralization Assay (CCNA)
      • Previous Methodologies: Antigenic Detection of Toxin and Glutamate Dehydrogenase (GDH)
      • Molecular Methods
      • BD GeneOhm™
      • illumigene®
      • Several methods of detection are available for the detection of Clostridium difficile in clinical samples. Which methods have the capability for detec...
      • What statements are TRUE about the glutamate dehydrogenase (GDH) assay for Clostridium difficile? (Choose all that apply.)
  • References
      • References

Additional Information

Level of instruction: Intermediate 
 
Intended audience: Medical laboratory scientists, medical technologists, and technicians, working in the microbiology section of the laboratory. This course is also appropriate for clinical laboratory science students and pathology residents.
 
Author information: Catherine Dragoni, MT(ASCP)SM received her BS degree in medical technology from the State University of New York, Upstate Medical Center, Syracuse. She began her career as a bench microbiologist at Maine Medical Center, Portland, Maine. Currently she is the Assistant Chief Technologist of Microbiology and Molecular Pathology at NorDx Laboratories, Scarborough, Maine.
 
Reviewer information: Dawn Morong, BS, MT(ASCP), CLS(NCA) received her BS degree from the University of New England, Biddeford, Maine. She is currently a Senior Medical Technologist at NorDx Laboratories in Scarborough, Maine.
 
Michele Marshall, MT(ASCP) received her BS degree in Medical Technology from the Rochester Institute of Technology in Rochester, NY after performing a one year internship at Region’s (St. Paul Ramsey Medical Center) Hospital in St. Paul, MN.  Michele worked for many years as a generalist before making the transition to her real passion in microbiology. Currently, she is the Laboratory Coordinator and the Microbiology Lead Technologist at Mid Coast Hospital in Brunswick, Maine.
 
Course description: This course offers a historical look at the progression of molecular methods used in the clinical laboratory. The advantages of these molecular methods over traditional microbiology are discussed, along with the requirements and challenges faced during implementation in a routine clinical setting. Basic methods and molecular techniques are described, including the principle reactions of some assays of current interest for infectious diseases.

CDC PCR diagnostic testkit
Accessed on 11-31-09 from: http://www.cdc.gov/H1n1flu/images.htm
Derivative melting curve
PCR Reaction
PNA FISH probes
Real-time PCR Stages
RNA-DNA-copying.JPG

Keywords

These are the most common topics and keywords covered in Molecular Methods in Clinical Microbiology:

obstacle clostridium orfx prodesse influenza antibody primers diagnostics chlamydia vaccine treatment methods evaluation branched cellular reagents transcription antigen mycobacterium organisms beacons slightest exogenous real-time gene pathogens management dehydrogenase toxins nucleotides geneohm#8482 sensitivity xpert primer subtyping procedurally enzyme ccna polymerase hairpin digene improvements methicillin-resistant bdna conserved cobas#174 samples toxigenic amplified assays pipette drug grant transcriptase-polymerase stewardship fluorescence aerosol staphylococci geometrically heated specimens methicillin annealing infection control amplicor roche cells quencher amplification immunoassay fluorescent beacon identification smartcycler#174 conditions pipetting assay lengths culture infections cepheids stranded labeled infection clinical differential antigenic vancomycin methodology ligase vial entail pathogen tcdb numbers circulating cepheid probes amplicons capital simultaneous health diagnostic disease denaturation volumes emission swine-lineage instilling logical staphylococcus transport authorization entails hybrid employing identifying one-step introducing glutamate cdna peroxidase transcriptase coagulase increasingly cooled pna-fish requirements aliquot diseases turnaround rt-pcr specificity thermocycler protocols seasonal microbiology respiratory platforms procedures fluorogenic delays aureus controls laboratory workflow substrate contains platform contamination prospect multiplex illumigene#174 cytotoxicity novel cytotoxin cultivate toxin incubation anneal nucleic cultivation virus infectious meca gen-probe quenched isothermal antibiotic diagnosis hospital neisseria hybridization swine non-culture clinicians prospects neutralization antimicrobial blood amplify organism
How to Subscribe
MLS & MLT Comprehensive CE Package
Includes 103 CE courses, most popular
$95 Add to cart
Pick Your Courses
Up to 8 CE hours
$50 Add to cart
Individual course$20 Add to cart


CDC PCR diagnostic testkit
Accessed on 11-31-09 from: http://www.cdc.gov/H1n1flu/images.htm


Derivative melting curve


PCR Reaction


PNA FISH probes


Real-time PCR Stages


RNA-DNA-copying.JPG