Fluorescent ANA Testing

This version of the course is no longer available.
Need multiple seats for your university or lab? Get a quote
The page below is a sample from the LabCE course Autoimmune Diseases and Antinuclear Antibody Testing: Methods and Staining Patterns (retired 3/30/2020). Access the complete course and earn ASCLS P.A.C.E.-approved continuing education credits by subscribing online.

Learn more about Autoimmune Diseases and Antinuclear Antibody Testing: Methods and Staining Patterns (retired 3/30/2020) (online CE course)
Fluorescent ANA Testing

The most common method of ANA testing is indirect fluorescent assay (IFA) utilizing fluorescein isothiocyanate (FITC) as the marker on the secondary antibody.
The fluorescent ANA test uses the indirect fluorescent antibody technique first described by Weller and Coons in 1954. Patient serum samples are incubated with antigen substrate to allow specific binding of autoantibodies to cell nuclei. If ANAs are present, a stable antigen-antibody complex is formed.
After washing to remove non-specifically bound antibodies, the substrate is incubated with an anti-human antibody conjugated to fluorescein. When results are positive, a stable three-part complex forms, consisting of fluorescent antibody bound to human antinuclear antibody that is bound to nuclear antigen. This complex can be visualized with the aid of a fluorescent microscope. In positive samples, the cell nuclei will show a bright apple-green fluorescence with a staining pattern characteristic of the particular nuclear antigen distribution within the cells. If the sample is negative for ANA, the nucleus will show no clearly discernible pattern of nuclear fluorescence. The cytoplasm may demonstrate weak staining while the non-chromosome region of mitotic cells demonstrates brighter staining.
The image to the right demonstrates the 4 basic ANA patterns (clockwise from top left): Homogeneous, speckled, centromere, and nucleolar. (Additional photos of these patterns will be seen in subsequent sections.)